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Introduction 
The dynamic interaction between predators and their 
prey has become a prominent issue in both ecology and 
mathematical ecology in recent times, owing to its 
universal occurrence and significance in population 
dynamics. Over the course of nearly thirty years, studies 
on predator-prey models have been established, and in 
light of observations and laboratory trials, more realistic 
models have been constructed (see [1-9]). Three species' 
predator-prey systems have been the subject of 
intriguing and striking research since the 1970s[10–14]. 
For instance, using the same biotic resource, Safuan [14] 
examined the Lesie-Gower predator-prey model dx x = 
r1x(1 −~) −  
 

dt qz  dz 
  
  = z(c − dx − ey), dt, where r1, r2, a, b, c, d, e, p, and q 
are positive constants and populations of prey, predator, 
and biotic resource, respectively, are represented by 
functions x(t), y(t), and z(t). For additional information 
about the biological background of system (1.1), see [14] 
and the sources listed therein. 
However, it is evident from the above model that the 
carrying capacities of the predator and prey are 
correlated with the population size of the biotic 
resource, meaning that the carrying capacities of the 
two species are dependent on the amount of biotic 
resource. At low densities, it exhibits slightly unique 
behaviour, which makes it impossible to linearize the 
model at the border equilibria. Thus, it is impossible to 
study the linear stability of boundary equilibria. In fact, 
this singularity adds a great deal to the model's diversity 
of dynamics and makes system analysis quite 
challenging. Actually, prey x and predator y will go to 
another population, but its expansion will be restricted, 
if this preferred food z is extremely insufficient. The 
carrying capacity of the model (1.1) is increased by a 
positive constant to produce the following modified 
Lesie-Gower omnivorous predator-prey model 

Individuals in a species undergo continual spatial 
distribution changes as a result of a variety of factors 
during their evolutionary process. Consequently, it has 
been acknowledged that the spatial aspect of ecological 
interactions plays a significant role. Several spatial 
effects have been included to population models in 
recent years. Many studies extend the predator-prey 
model of ODE to the corresponding diffusive predator-
prey model by integrating the diffusion components, 
taking into account the natural diffusion and inhibitory 
impact (see[15-36]). 
Through the incorporation of diffusion into model (1.1) 
in [31], Jau examined the subsequent nonlinear diffusive 
Lesie-Gower model of predator-prey 
 
 
where the densities of the prey, predator, and biotic 
resource at time t and location x ∈ Ω are represented by 
the variables u(t, x), v(t, x), and w(t, x), respectively. ∂Ω 
is C1−class, Ω is a bounded open set in Rn, and the 
Holder continuous functions on Ω are u0(x), v0(x), and 
w0(x). The boundary ∂Ω's outward unit normal vector is 
represented by v. According to the homogeneous 
Neumann border conditions, there is no population 
movement over the boundary, indicating that the 
predator-prey system is self-contained. He looked into 
whether there was a unique solution for system (1.3), 
and as a consequence, he came to the following 
conclusion[31]. 

Theorem A Suppose that constants ε, α, β, M, N and 
K satisfy 

0 < ε ≤ min w0(x), α ≥  w0  ∞, β ≥ 

c, M ≥ max u0  ∞, pαeβT }, 
x∈Ω¯ 

N ≥ max v0  ∞, 
r2 + bM qαeβT , 1 

(c − dM )}, K ≥ dM + eN − c, 

  

 
 

 
(1.4) 
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Then, (0, 0, εe−Kt) ≤ (u, v, w) ≤ (M, N, αeβt) and the 
system (1.3) has a unique solution (u, v, w) on [0, T ] × 
Ω¯. 
The three species food web models of the predator-prey 
type that we will be focusing on in this research have an 
omnivorous apex predator, which is characterised as 
feeding on many trophic levels. This is actually a general 
component of terrestrial or marine food web ecological 
systems. As an illustration, consider the following: 
species w are plants, species u are herbivores, and 
species v eat both plants and other herbivores. As an 
additional illustration, tiny animals like lizards and birds 
devour a lot of spiders and herbivorous insects. 
Additional examples can be found in the intricate marine 
food web systems. The terms "trophic level omnivory," 
"intraguild predation," "higher order predation," and 
"hyperpredation" have all been used to describe this 
phenomenon[37]. Inspired by the previous research, we 
would want to examine the following diffusive modified 
Lesie-Gower predator-prey model with omnivory and 
general nonlinear functional response ∂u~~u~ ∂v by 
adding the diffusion into the model (1.2). 
 
u(t, x), v(t, x), and w(t, x) are the densities of the prey, 
predator, and biotic resource at time t and position x ∈ 
Ω, respectively. u(0, x) = u0(x), v(0, x) = v0(x), and w(0, x) 
= w0(x), x ∈ Ω. With a general nonlinear functional 
response φ(u), the predator devours the prey and 
contributes to its growth at a rate bφ(u). The following 
presumptions are applied to the function φ(u), which 
Georgescu and Morosanu thoroughly examined in [38]. 
(G) For u ∈ R+, where L ≥ 0, φ(u) of the C1−class is 
rising on R+, φ(0) = 0, and 0 ≤ φ′(u) < L. 
It should be noted that if function φ(u) represents the 
Holling type II functional response, that is, φ(u) = au/(1 + 
hu), where an is the resource and intermediate 
consumer search rates and h is the corresponding 
clearance rate, or the search rate multiplied by the 
(ostensibly constant) handling time, then hypothesis (G) 
is satisfied. 
In order to demonstrate the existence and uniqueness of 
the solution for the system (1.5) using the methods of 
the upper and lower solutions [39] and the semigroup 
theory [40, 41], we will expand on the analysis 
methodology of Jau [31] in this study. The remainder of 
the paper is organised as follows. We shall present the 
idea of the higher and lower solutions in the remaining 
sections of this part. Assuming the existence of the 
lower solution and the upper solution, u˴ = (u˴, v˜, w˴), in 
Section 2. 
 
 
For the problem (1.5), uˆ = (uˆ, vˆ, wˆ), we will 
demonstrate the existence and uniqueness of the 

solution on the sector ▨uˆ, u˴▩ ≡ {u= (u, v, w) ∈ C(D¯T 
):uˆ ≤ u ≤ u˴}. Two upper and lower solutions to 
problem (1.5) on [0, T ]×Ω¯, where T is an arbitrary 
positive number, are provided in Section 3. Next, we 
establish that the solution (u, v, w) to problem (1.5) on 
[0, T ] × Ω¯ exists and is unique. Conclusions are 
provided at the end of the paper in Section 4. 

Let u1 = u, u2 = v, u3 = w, u1,0 = u0, u2,0 = v0, u3,0 = w0, 
L1 = d1∆, L2 = d2∆, L3 = 0, B = ∂, and so on in order to 
simplify the notations of the system (1.5). 

   

 
r

1

u
2 

f1(u1, u2, u3) = r1u1 −  − φ(u1)u2, k1 + pu3 

  

r

2

u
2 

f2(u1, u2, u3) = r2u2 −  + bφ(u1)u2, k2 + qu3 
f3(u1, u2, u3) = cu3 − 
du1u3 − eu2u3. 

 
 

 
(1.6) 

 

Assuming that T is an arbitrary positive number and that 
DT = (0, T ] ×Ω and ST = (0, T ] × ∂Ω, system (1.5) can be 
expressed as (ui)t − Liui = fi(u1, u2, u3), where i = 1, 2, 3, 
and DT = (0, T ] ×Ω. 

 

In ST, i = 1, 2 ui(0, x) = ui,0(x), in Ω, i = 1, 2, 3. Bui(t, x) = 0. 

 

regarding every (u1, u2, u3) ∈ J1 × J2 × J3. According to 
this, for every (u1, u2, u3) ∈ J1 × J2 × J3, f1 is monotone 
nonincreasing in u2 and monotonous nondecreasing in 
u3, f2 is monotone nondecreasing in u1 and monotone 
nondecreasing in u3, and f3 is monotone nonincreasing 
in u1 and monotone nonincreasing in u2. For each i = 1, 
2, 3, where ai + bi = 2, let u = (u1, u2, u3) and fi(u)= 
fi(ui,[u]ai,[u]bi). Then, fi is monotone nonincreasing in 
[u]bi and monotone nondecreasing in [u]ai. The coupled 
upper and lower solutions of the system (1.7) are then 
defined as follows (see[39]). 

Definition 1.1. If u˜1, u˜2, uˆ1, uˆ2 ∈ C(D¯T ) ∩ C1,2(DT ), 
u˜3, uˆ3 ∈ C(D¯T ) ∩ C1,0(DT ), and u˜ ≥ uˆ (i.e., u˨2 ≥ 
uˆ1) with uˆ3(t, x) > 0 in DT = [0, T ] × Ω¯, and (u˜i)t − 
Liu˜i − fi(u˜i, [u˜]ai, [uˆ]bi ) ≥ 0, in DT, i = 1, 2, 3. 

 

(uˆi)t − Liuˆi − fiIn DT, where i = 1, 2, 3, (uˆi, [uˆ]ai, 
[u˜]bi ) ≤ 0. 

On ST, i = 1, 2 u˜i(0, x) ≥ ui,0(x) ≥ uˆi(0, x), in Ω, i = 1, 2, 
3. Bu˜i(t, x) ≥ 0 ≥ Buˆi(t, x).(1.9) 

 

We define the sector ▨uˆ, u˜▅ ≡ {u= for a given pair of 
connected upper and lower solutions, u˴, uˆ. 

 

(v, w) ∈ C(D¯T): uˆ {≤ u ≤ u˜}.  Suppose that c1 = 2r1u˜1 
+ Lu˜2 − r1, and c1^3 = 2r2u˜2 + bφ(uˆ1) − r2, 2~3. 
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Du˜1 + eu˜2 − c = c3. Therefore, for any i between 1 and 
3, ci ∈ C(D¯T). Applying the differential mean value 
theorem, we can readily deduce that, for every uˆ1 ≤ v1 
≤ u1 ≤ u˜1, f1(u1, u2, u3) − f1(v1, u2, u3) = r1(u1 − v1) 
− r1 (u1 + v1)(u1 − v1) 

r1(u1 − v1) − r1 (u1 + v1)(u1 − v1) = 1^3 −(φ(uˆ1) − 
φ(vˆ1))u2 

1~3 −φ′(ξ)(u1 − v1)u2 ≥ (r1 − 2r1u˜1 − Lu˜2)(u1 − v1) 

−c1(u1 − v1) = 1~3 

 

 

where (v1, u1) is the range of ξ. 

For uˆ2 ≤ v2 ≤ u2 ≤ u˜2, we can similarly derive that 
f2(u1, u2, u3) − f2(u1, v2, u3) = r2(u2 − v2) − r2 (u2 + 
v2)(u2 − v2) 

2^3 + bφ(u1)(u2 − v2) ≥ (r2 − 2r2u˜2 + bφ(uˆ1))(u2 − 
v2), and for uˆ3 ≤ v3 ≤ u3 ≤ u˜3, f3(u1, u2, u3) − f3(u1, 
u2, v3) ≥ −c3(u3 − v3). 

It is therefore demonstrated that for any uˆi ≤ vi ≤ ui ≤ 
u˜i, fi(ui, [u]ai, [u]bi ) − fi(vi, [u]ai, [u]bi ) ≥ −ci(ui − vi), 
where i = 1, 2, 3.(1.10) Consider the following: c1 = r1 − 
2r1uˆ1, c2 = r2 − 2r2uˆ2 + bφ(u˜1), c3 = c − duˆ1 − 
euˆ2. As a result, for each i = 1, 2, 3, ci ∈ C(D¯T) 
k1+pu˜3~k2+qu˜3. Using the differential mean value 
theorem, we can quickly determine that, for each uˆ1 ≤ 
v1 ≤ u1 < u˜1, f1(u1, u2, u3) − f1(v1, u2, u3) = r1(u1 − 
v1) − r1 (u1 + v1)(u1 − v1) 

One-third −(φ(uˆ1) − φ(vˆ1))r1 (u1 − v1) − r1 (u1 + 
v1)(u1 − v1) equals u2. 

1~3 −φ′(ξ)(u1 − v1)u2 ≤ (r1 − 2r1uˆ1 )(u1 − v1) 

Where ξ ∈ (v1, u1), 1 3 = c1(u1 − v1). 

For uˆ2 ≤ v2 ≤ u2 ≤ u˜2, we can similarly derive that 
f2(u1, u2, u3) − f2(u1, v2, u3) = r2(u2 − v2) − r2 (u2 + 
v2)(u2 − v2) 

(r2 − 2r2uˆ2 + bφ(u˜1))(u2 − v2) = 2^3 + bφ(u1)(u2 − 
v2) 

2^3 = c2(u2 − v2), and f3(u1, u2, u3) − f3(u1, u2, v3) < 
c3(u3 − v3) for uˆ3 ≤ v3 ≤ u3 ≤ u˜3. 

Consequently, we establish that for each ci ∈ C(D¯T), 
such that uˆi ≤ vi ≤ ui ≤ u˜i, 

(1.11)r1pu˜2 = fi(ui, [u]ai, [u]bi ) − fi(vi, [u]ai, [u]bi ) ≤ 
ci(ui − vi), i = 1, 2, 3. 

 

For each i = 1, 2, 3, and K1,2 = φ(u˜1), K1,3 = r2qu˜2 ~1 
2, K2,1 = bLu˜2, K2,3 = 1~3, let Ki,i = |ci| + |ci|. 

 

2 2, Ki = Ki,1 + Ki,2 + Ki,3, i = 1, 2, 3, and K3,1 = du˜3 on 
D¯T. K3,2 = eu˜3.  Thus, for any i, j = 1, 2, 3, 2^3 Ki,j ∈ 
C(D¯T) and Ki ∈ C(D¯T), indicating that Ki,j, and Ki are 
bounded functions in D¯T. 

It derives from 

 

 

for all i = 1 through 3. For u ∈ ▨uˆ, u˜▩,i = 1, 2, 3, this 
inequality demonstrates that fi meets the Lipschitz 

condition. Additionally, fi is a holder continuous function 
with i = 1, 2, and 3 on (t, x) ∈ D¯T. 

The differential equations in system (1.7) can be 
expressed as (ui)t − Liui + ciui = Fi(ui, [u]ai, [u]bi ), in DT, 
i = 1, 2, 3. Let Fi(ui,[u]ai,[u]bi ) = fi(ui,[u]ai,[u]bi ) + ciui, i 
= 1, 2, 3. 

Lemma 8.1 in [39] gives us the lemma that follows. 

Lemma 1.2. We indicate that Fi(u)(t, x) = Fi(u(t, x)) on 

D¯T for each u ∈ ▨uˆ, u˜▩, where i = 1, 2, 3. For all i = 1, 
2, 3, the function Fi(u) is Holder continuous in DT if u ∈ 
Cα(DT) and α ∈ (0, 1). Furthermore, assuming that u ≥ v 

and that u, v ∈ ▨uˆ, u˜⟩, Fi(ui, [u]ai, [v]bi ) − Fi(vi, [v]ai, 
[u]bi ) ≥ 0, for i = 1, 2, 3. 

 

Existence and Uniqueness of the 
Solution on ⟨ û ,  ũ ⟩  
 

The upper solution u˝ = (u˝1, u˴2, u˴3) and lower 
solution uˆ = (uˆ1, uˆ2, uˆ3) of the system (1.7) are 
always assumed to exist in this section. For every i = 1, 2, 
3, let Aiui = (ui)t − Liui + ciui. The two starting 
iterations are u¯(0) = u˴ and u¯(0) = uˆ. From the 
iteration process, we create the maximal and minimal 
sequences u¯(k) = (u¯(k), u¯(k), u¯(k)), u(k) = (u(k), 
u(k), u(k)). 

1 2 3 1 2 3 

In DT, where i = 1, 2, 3, i^i~i~i, Aiu¯(k) = Fi(u¯(k−1), 
[u¯(k−1)]a, [u(k−1)]b 

Aiu(k) = Fi(u(k−1), [u(k−1)]a, [u¯(k−1)]b ) in DT, i = 
1, 2, 3, i~i~i~i Bu¯(k)(t, x) = Bu(k)(t, x) = 0 on ST, i = 
1, 2, i~i u¯(k)(0, x) = u(k)(0, x) in Ω, i = 1, 2, 3. 

I i 

We first express the following positive lemmas, which 
were stated in [39], before demonstrating the 
monotone property of the maximal and minimal 
sequences. 

Lemma 2.1: Let u ∈ C(D¯T ) ∩ C1,2(DT ) be such that 
∂u − α∆u + βu ≥ 0, for all 0 < t ≤ T, x ∈ Ω,∂t ∂ u(t, x) ≥ 
0, for all 0 < t ≤ T, x ∈ ∂Ω,∂v u(0, x) ≥ 0, for x ∈ Ω, 
where α > 0 and β = β(t, x) is a bounded function in 
DT = (0, T ] × Ω. In DT, then u(t, x) >= 0. Furthermore, 
unless it is also zero in DT, u(t, x) > 0 in DT. 

Lemma 2.2: Assume that u ∈ C(D¯T ) ∩ C1,2(DT ) and 
that for any t ≤ T, x ∈ Ω, ∂t u(0, x) ≥ 0, for x ∈ Ω, where 
β = β(t, x) is a bounded function in DT = (0, T ] × Ω. In 
DT, then u(t, x) >= 0. Furthermore, unless it is also 
zero in DT, u(t, x) > 0 in DT. 

 

 

We will now demonstrate the maximal and minimal 
sequences' monotone quality, which allows us to 
derive the following theorem. 

Theorem 2.3. Let us assume the following: u^ = (u˴1, 
u˴2, u˴3) and uˆ = (uˆ1, uˆ2, uˆ3) are Holder continuous 
in x, uniformly in DT; u1,0, u2,0 are Holder continuous 
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on the domain Ω¯ satisfying the boundary condition at 
t = 0; u3,0 is Holder continuous on the domain Ω¯. 
Then, for any k, the maximal and minimal sequences 
{u¯(k)}, {u(k)} are well-defined on DT and have the 
monotone property uˆ ≤ u(k) ≤ u(k+1) ≤ u¯(k+1) ≤ 
u¯(k) ≤ u˜, (2.1) in DT. Additionally, u¯(k) and u(k) are 
connected upper and lower solutions of the system 
for each integer k (1.7). 

 

 

Evidence. Since the proof for Theorem 2.3 is identical 
to that found in [31], it is not included here. 

The pointwise (and componentwise) limits lim 
u¯(k)(t, x) = u¯(k)(t, x), lim u(k)(t, x) = u(k)(t, x) are 
due to the monotone property.(2.2) 

In DT, k→∞k→∞ exist and meet the connection uˆ ≤ u 
≤ u· ≤ u˜. We need to demonstrate that u ≤ u¯ in DT in 
order to demonstrate that the system (1.7) has a 

unique solution in ▨uˆ, u˜▩. 

Remark 2.4. Assume that the system's connected 
upper and lower solutions are u˧ and uˆ (1.7). The 

system (1.7) has a unique solution, u∗, and u∗ ∈ ▨uˆ, 

u˜▩. Furthermore, the iteration process with starting 
iterations u¯(0) = u˜ and u(0) = uˆ yields sequences 
u¯(k), u(k) that both converge monotonically to u∗. 

Evidence. Since the proof for Theorem 2.4 is identical 
to that found in [31], it is not included here. 

 

• Existence and Uniqueness 
of Solution of System (1.5) 

• First, we shall demonstrate that the system 
(1.5) on D¯T = [0, T ] × Ω¯ has both upper and 
lower solutions. It is demonstrated that the 
system(1.5) solution exists on D¯T. Next, we'll 
demonstrate the system(1.5) solution's 
uniqueness on D¯T. As a result, the system 
(1.5) has a unique solution on D¯T, where T is 
any positive integer. 

• Conclusion 3.1. Assume that constants α, β, 
M, and N meet the following conditions: α ≥ 
u3,0 ∞, β ≥ c, M ≥ ∞, k1 + pαeβT 
},(3.1) 

•  

• The upper and lower coupled solutions of the 
system (1.7) on [0, T ] × Ω¯ are then two 
functions (u˜1, u˨2, u˜3) = (M, N, αeβt), (uˆ1, 
uˆ2, uˆ3) = (0, 0, 0). Moreover, Holder 
continuous in x, uniformly in D¯T, are u˜ = 
(u˜1, u˴2, u˜3) and uˆ = (uˆ1, uˆ2, uˆ3). 

• Evidence. We have uˆ1(t, x) = 0 ≤ M = u˜1(t, 
x), uˆ2(t, x) = 0 ≤ N = u˨2(t, x), uˆ3(t, x) = 0 ≤ 

{∂v 2 {∂ν 2 because u˜1 = M, uˆ1 = 0, u˨2 = N, 
uˆ2 = 0, and u˨3 = αeβt, uˆ3 = 0. 

•  

• uˆ1(0, x) = 0 ≤ u1,0(x) ≤ max{u1,0(x), x ∈ Ω¯ } 
≤ M = u˜1(0, x) is the result of M ≥ u1,0 ∞ = 
max{u1,0(x), x ∈ Ω¯ }, uˆ1 = 0. 

• Similarly, we have uˆ2(0, x) = 0 ≤ u2,0(x) < 
max{u2,0(x), x ∈ Ω¯ } ≤ M = u˜2(0, x) from N 
≥ u2,0 ∞ = max{u2,0(x), x ∈ Ω¯ }, uˆ2 = 0. 

• We can determine that uˆ3(0, x) = 0 ≤ u3,0(x) 
≤ max{u3,0(x), x ∈ Ω¯ } ≤ α = u˜3(0, x) from 
α ≥ u3,0 ∞ = max{u3,0(x), x ∈ Ω¯ }, uˆ3 = 0. 

• Thus, the upper and lower coupled solutions 
of the system (1.7) on [0, T ] × Ω¯ are 
represented by a pair of functions (u˜1, u˨2, 
u˜3) = (M, N, αeβt), (uˆ1, uˆ2, uˆ3) = (0, 0, 0). 
The proof is finished. 

• The following result is easily obtained from 
Theorem 3.1. 

• Conclusion 3.2. Assume α, β, M, and N are 
constants that fulfil α ≥ w0 ∞, β ≥ c, M ≥ 

∞, k1 + pαeβT }, 

•  

•  N = max{⣿v}, r2 + bφ(M )(k}+ qαe\T )}, (3.2) 

•  

• 0 ∞ 2 

•  

•  

• Afterwards, the upper and lower coupled 
solutions of the system (1.5) on [0, T ] × Ω¯ 
are represented by a pair of functions (u˜, v˜, 
w˜) = (M, N, αeβt), (uˆ, vˆ, wˆ) = (0, 0, 0). 
Moreover, Holder continuous in x, uniformly 
in D¯T, are (u˴, v˜, w˜) and (uˆ, vˆ, wˆ). 

• We shall now demonstrate that the unique 
solution 1~2~3 of the system (1.7) on [0, T ] × 
Ω¯ is the limit of the maximum and minimum 
sequences u¯(k) = (u¯(k), u¯(k), u¯(k)), u(k) = 
1~2~3 (u(k), u(k), u(k)) with initial iterations 
u¯(0) = (M, N, αeβt) and u(0) = (0, 0, 0). 
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• Theorem 3. Assuming (3.1) is true, there 
exists a unique solution (u1, u2, u3) for the 
system (1.7) on [0, T ] × Ω¯, and (0, 0, 0) ≤ 
(u1, u2, u3) ≤ (M, N, αeβt). 

• Evidence. Assuming that the solutions of the 
system (1.7) on [0, T ] × Ω¯ are (u1, u2, u3) 
and (v1, v2, v3), there exists a positive 
number M0 such that (0, 0, 0) < (u1, u2, u3), 
and (v1, v2, v3) ≤ (M0, M0, M0). 

• A comparable demonstration of (1.12) in 
Section 1 allows us to quickly determine that 
constants K˜i, where i = 1, 2, and 3, exist such 
that 

•  

•  

• Given that {|fi(u1, u2, u3) − fi(v1, v2, v3)| ≤ 
K˜i(|u1 − v1| + |u2 − v2| + |u3 − v3|). 

•  

• (u1)t − d1∆u1 = f1(u1, u2, u3), (u2)t − d2∆u2 
= f2(u1, u2, u3), (u3)t = f3(u1, u2, u3), (v1)t − 
d1∆v1 = f1(v1, v2, v3), (v2)t − d2∆v2 = f2(v1, 
v2, v3), (v3)t = f3(v1, v2, v3), 

•  

• as well as the starting and boundary 
conditions 

• ∂ v (t, x) = 0, x ∈ ∂Ω, t > 0, i = 1, 2, ∂ν i~∂ν i 
ui(0, x) = vi(0, x) = ui,0(x), x ∈ Ω, i = 1, 2, 3. 

• For every t in [0, T] and every x in Ω¯, let 
ui(t)(x) = ui(t, x) and vi(t)(x) = vi(t, x). We can 
readily obtain that u1(t) − v1(t) + u2(t) − 
v2(t) + u3(t) − v3(t) = u1(s) − v1(s) + u2(s) − 
v2(s) + u3(t) − v3(t) ∞ t ≤ (K1 + K2 + K3)~( 
u1(s) − v1(s) + u2(s) − v2(s) + u3(s) − v3(s) 
)ds. 

• Gronwall's inequality thus gives us ui(t, x) = 
vi(t, x), i = 1, 2, 3, for any t in the interval [0, 
T] and x in the interval Ω¯. The system (1.7) 
has a unique solution (u1, u2, u3) on [0, T ] × 
Ω¯, and (0, 0, 0) ≤ (u1, u2, u3) ≤ (M, N, 
αeβt), according to Theorems 2.4 and 3.1. 

• The following result is easily obtained from 
Theorem 3.3. 

• Theme 3.4. If equation (3.1) is true, then 
there is only one solution (u, v, w) for the 
system (1.5) on [0, T ] × Ω¯, and (0, 0, 0) ≤ (u, 
v, w) ≤ (M, N, αeβt). 

Conclusion 

This research examines a modified Lesie-Gower 
food web model with three species, featuring 
omnivory—defined as feeding on more than one 
trophic level—and general nonlinear functional 
response. 

 

 

degree. The biotic resource's population size plus a 
constant determines the model's carrying capacity. 
Jau also examined a three-species Lesie-Gower food 
web model (1.3) in [11] using the same biotic 
resource; however, the model's carrying capacity is 
only proportionate to the biotic resource's 
population size without the addition of a constant. 
At low densities, it exhibits slightly unique 
behaviour, which makes it impossible to linearize 
the model at the border equilibria. In fact, the 
analysis of the system is greatly complicated by this 
singularity (1.3). As a result, the model takes 
omnivory into account (1.5). Using the techniques of 
upper and lower solutions along with semigroup 
theory, we can determine that if (3.1) is true, then 
there is only one solution (u, v, w) for the system 
(1.5) on [0, T ] × Ω¯ and (0, 0, 0) ≤ (u1, u2, u3) ≤ (M, 
N, αe\t). 

According to Jau's findings in [11], if (1.4) is true, 
then there exists a unique solution (u, v, w) for the 
system (1.3) on [0, T ] × Ω¯, and (0, 0, εe−Kt) < (u, v, 
w) ≤ (M, N, αeβt). 

Clearly, compared to condition (1.4), condition (3.1) 
is weaker and simpler. Additionally, our paper's 
scope of solutions is greater than that of [11]. From 
the explanation above, it is clear that omnivory has 
a significant impact on the system's uniqueness and 
existence (1.5). Indeed, several Artiodactyla species 
are omnivores; they include wild boar, which mostly 
eats grass, sweet potatoes, roots, tubers, and wild 
fruit. Because they can consume a variety of foods, 
if one type of food is scarce, like wild fruit, they can 
eat sweet potatoes instead, which will help them 
survive in the harsh environment. 

Indeed, the system (1.5) can be changed to the 
system (1.3) if ki → 0, i = 1, 2, and φ(u) = au. As a 
result, when examining system (1.5), we can clearly 
observe more dynamic behaviours of system (1.3). 
One of the primary findings of Jau's study [Jau GC. 
The challenge of the nonlinear diffusive predator-
prey model with the same biotic resource] is 
demonstrated to be complemented and enhanced 
by our result. Real World Applications, Nonlinear 
Anal., 2017; 34: 188-200]. 
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